Synthesis and Evaluation of Molybdenum and Tungsten Monoaryloxide Halide Alkylidene Complexes for Z-Selective Cross-Metathesis of Cyclooctene and Z-1,2-Dichloroethylene Jonathan K. Lam, [‡] Congqing Zhu, [‡] Konstantin V. Bukhryakov, [‡] Peter Müller, [‡] Amir Hoveyda, [†] and Richard R. Schrock*, [‡]Department of Chemistry 6-331, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States Supporting Information ABSTRACT: Molybdenum complexes with the general formula Mo(NR)(CHR')(OR'')(Cl)(MeCN) (R = t-Bu or 1adamantyl; OR'' = a 2,6-terphenoxide) recently have been found to be highly active catalysts for cross-metathesis reactions between Z-internal olefins and Z-1,2-dichloroethylene or Z-(CF₃)CH=CH(CF₃). In this paper we report methods of synthesizing new potential catalysts with the general formula M(NR)(CHR')(OR'')(Cl)(L) in which M = Mo or W, NR =N-2,6-diisopropylphenyl or NC₆F₅, and L is a phosphine, a pyridine, or a nitrile. We also test and compare all catalysts in the cross-metathesis of Z-1,2-dichloroethylene and cyclooctene. Our investigations indicate that tungsten complexes are inactive in the test reaction either because the donor is bound too strongly or because acetonitrile inserts into a W=C bond. The acetonitrile or pivalonitrile Mo(NR)(CHR')(OR")(Cl)(L) complexes are found to be especially reactive because the 14e Mo(NR)(CHR')(OR")Cl core is accessible through dissociation of the nitrile to a significant extent. Pivalonitrile can be removed (>95%) from Mo(NAr)(CHCMe₂Ph)(OHMT)(Cl)(t-BuCN) (Ar = 2,6-diisopropylphenyl; OHMT = 2,6dimesitylphenoxide) to give 14e Mo(NAr)(CHCMe₂Ph)(OHMT)Cl in solution as a mixture of syn and anti (60:40 at 0.015 M) nitrile-free isomers, but these 14e complexes have not yet been isolated in pure form. The syn isomer of Mo(NAr)(CHCMe₂Ph)(OHMT)Cl binds pivalonitrile most strongly. Other Mo(NR)(CHR')(OR")(Cl)(L) complexes can be activated through addition of $B(C_6F_5)_3$. High stereoselectivities (>98% Z,Z) of ClCH=CH(CH₂)₆CH=CHCl are not restricted to tert-butylimido or adamantylimido complexes; 96.2% Z selectivity is observed with boron-activated Mo(NC₆F₅)(CHR')(OHIPT)(Cl)(PPhMe₂). So far no Mo=CHCl complexes, which are required intermediates in the test reaction, have been observed in NMR studies at room temperature. ## ■ INTRODUCTION High-oxidation-state molybdenum and tungsten complexes of the type M(Z)(CHR)(X)(Y), where Z is an imido (M = Mo orW) or an oxo ligand (M = W), have been explored as initiators of many types of olefin metathesis reactions in the last several years. The most effective combinations primarily are those in which Y is a sterically demanding terphenoxide such as 2,6dimesitylphenoxide (OHMT) and X is pyrrolide (Pyr) or 2,5dimethylpyrrolide (Me₂Pyr).² These "MAP" (monoalkoxide pyrrolide) complexes have been found to be useful for Zselective metathesis reactions of small molecules³ and the ringopening metathesis polymerization of cyclic olefins to give cis, syndiotactic polymers. ⁴ The most recent advances in metatheses of small molecules include the Z-selective⁵ or E-selective⁶ syntheses of halogenated alkenes from olefins that contain one or more electron withdrawing substituents, e.g., ClCH= CHCl, 5,6 BrCH=CHBr, 5,6 FCH=CHBr, 5,6 or, most recently, $(CF_3)CH=CH(CF_3)$. In the search for Mo=CHX complexes (X = Cl or Br), which are required intermediates in reactions that involve ClCH=CHCl or BrCH=CHBr, the monobromide complex, $Mo(NAd)(CHCMe_2Ph)(OHMT)(Br)(py)$ (Ad = 1-adamantyl and py = pyridine), was isolated in low yield. An X-ray study showed that the structure of Mo(NAd)(CHCMe₂Ph)-(OHMT)(Br)(py) is close to a square pyramid $(\tau = 0.21^8)$ with the *syn* alkylidene in the apical position. We proposed that Mo(NAd)(CHCMe2Ph)(OHMT)(Br)(py) is formed when HBr, which is generated in an unknown manner in the complex reaction mixture, reacts with Mo(NAd)(CHCMe₂Ph)-(OHMT)(Pyr). We saw no evidence for Mo=CHX Received: October 6, 2016 Published: November 10, 2016 intermediates in these reactions and began to suspect that 14e Mo(NR)(CHX)(OAr)(X) (OAr = aryloxide; X = Cl or Br) complexes might be key intermediates in cross-coupling reactions with electron-poor olefins. Therefore, we turned our attention to developing viable synthetic routes to monoaryloxide halide complexes. A few monoaryloxide chloride ("MAC") alkylidene complexes had been published before Mo(NAd)(CHCMe₂Ph)-(OHMT)(Br)(py) was discovered. They are Mo(NAr_{Mes2})-(CHCMe₂Ph)(OHMT)(Cl)(py), where NAr_{Mes}, is the sterically demanding 2,6-dimesitylphenylimido ligand,9 tungsten oxo complexes such as W(O)(CH-t-Bu)(OHIPT)(Cl)- (PMe_2Ph) $(OHIPT = O-2,6-(2,4,6-i-Pr_3C_6H_2)_2C_6H_3)_1$ tert-butylmido complexes such as W(N-t-Bu)(CH-t-Bu)-(OHMT)(Cl)(py). 11 In all X-ray studies the five-coordinate structures are close to square pyramids with the alkylidene in the apical position and the halide trans to the neutral 2e donor ligand (see Table S2 in the Supporting Information (SI)). In a recent paper we reported a route to 16e Mo monoaryloxide halide complexes in which acetonitrile is the donor ligand, namely Mo(N-t-Bu)(CH-t-Bu)(OHIPT)(X)-(MeCN) (X = Cl, Br) and Mo(NAd)(CHCMe₂Ph)(OAr)-(Cl)(MeCN) (OAr = OHMT or OHIPT). The acetonitrile complexes were found to be highly active for the Z-selective cross-metathesis reactions between Z-ClCH=CHCl and a selection of olefins, including cyclooctene. Pyridine analogues were much slower as a consequence of the stronger binding of pyridine to the 14e Mo(NAd)(CHCMe₂Ph)(OAr)Cl core compared to acetonitrile. The pyridine adducts can be activated through addition of 1 equiv of $B(C_6F_5)_3$, which sequesters all pyridine as $(py)B(C_6F_5)_3$. Because of what appear to be high reactivities, high selectivities, and unique abilities of nitrile adducts of Mo monoaryloxide halide complexes in crossmetathesis reactions involving electron-poor olefins as crosspartners, we explore further in this paper the syntheses of monoaryloxide halide complexes of Mo and W and, in a test reaction, compare their activities in the ring-opening crossmetathesis (ROCM) between Z-ClCH=CHCl and cyclooctene to give ClCH=CH(CH₂)₆CH=CHCl. # ■ RESULTS AND DISCUSSION Synthesis of Mo(NAr) MAC Complexes. We chose to explore the synthesis of Mo=NAr (Ar = 2,6-i-Pr₂C₆H₃) complexes as alternatives to adamantyl or tert-butylimido complexes because sterically hindered NAr complexes tend to be more stable toward bimolecular decomposition. 1b,12, The reaction between Mo(NAr)₂(CH₂CMe₂Ph)₂, 2,2'bipyridine (bipy), and pentafluorophenol in diethyl ether shown in Scheme 1 is modeled after syntheses of adamantylimido and tert-butylimido complexes. 7,14-16 The reaction between 1, C₆F₅OH, and bipy is extremely slow at 22 °C and generates a mixture of alkylidene complexes. However, at 50 °C in a sealed vessel Mo(NAr)(CHCMe2Ph)-(bipy)(OC₆ F_5)₂ (2) could be prepared in 76% yield as a sparingly soluble yellow solid; only one major (>95%) alkylidene resonance for 2 was observed in the ¹H NMR spectrum. In the presence of pentafluorophenol alone, no alkylidene product is observed. Therefore, coordination of bipy must accelerate the α hydrogen abstraction process through binding to the metal in some intermediate on the way to 2. (α -Abstraction is known to be accelerated by ligand binding to the dialkyl precursor complex. 12a,b) Bipy/HCl combinations have Scheme 1. Synthesis of Mo(NAr) MAC Complexes been successful for the synthesis of W alkylidenes, 17 but they generally have not been effective for the synthesis of Mo alkylidene complexes. 15 The alkylidene ligand in 2 is in the syn orientation on the basis of the value for J_{CH} (125 Hz).² The two pentafluorophenoxide ligands are not equivalent according to ¹⁹F NMR spectra, and the presence of two Ar methine ¹H resonances suggests that rotation of Ar around the N-C bond is slow on the NMR time scale. The reaction between 2 and TMSCl afforded minimally soluble Mo(NAr)(CHCMe₂Ph)(bipy)Cl₂ (3) in 90% yield as a mixture of two isomers. The reaction between 3, LiOHMT, and ZnCl₂ then gave Mo(NAr)(CHCMe₂Ph)(OHMT)Cl (4) as a pentane-soluble intermediate that could be converted into $Mo(NAr)(CHCMe_2Ph)(OHMT)(Cl)(t-BuCN)$ (4(t-BuCN)) in 46% yield, Mo(NAr)(CHCMe₂Ph)(OHMT)(Cl)(PPhMe₂) (4(PMe₂Ph)) in 62% yield, or Mo(NAr)(CHCMe₂Ph)-(OHMT)(Cl)(3-Brpy) (4(3-Brpy)) in 48% yield upon addition of pivalonitrile, dimethylphenylphosphine, or 3bromopyridine, respectively (Scheme 1). Pivalonitrile was chosen because it might be more labile than acetonitrile. Synthesis of an adduct of 4 in essentially five steps from molybdate is relatively convenient, in part because minimally soluble 2 and 3 are readily isolated, 4 need not be isolated, impurities formed in the synthesis of 4 are not soluble in pentane, and sparingly soluble five-coordinate adducts of 4 can be isolated in moderate to good yield. An X-ray study of 4(t-BuCN) (Figure 1) showed it to have nearly a square pyramidal structure ($\tau = 0.11^8$) with the neophylidene ligand in the apical position and in a syn orientation. The pivalonitrile ligand is in a basal position trans to the chloride. None of the distances or angles is unusual, and the overall structure is similar to those of Mo(NAd)- $(CHCMe_2Ph)(OHMT)(Br)(py)$ ($\tau = 0.21^7$) and Mo(N-t-1)Bu)(CH-t-Bu)(OHIPT)(Cl)(3-Brpy) ($\tau = 0.21^7$). In all structures so far (see Table S2 in SI), including those mentioned in the Introduction, the neutral 2e donor is found to be trans to the halide. If the nitrile dissociates and an olefin coordinates to the metal in the same position to form a trigonal bipyramidal metallacyclobutane complex, the imido and aryloxide ligands would be in apical positions in the intermediate. Loss of the olefin product with minimal Journal of the American Chemical Society
Figure 1. Structure of Mo(NAr)(CHCMe₂Ph)(OHMT)(Cl)(t-BuCN). Hydrogen atoms, except on C1, have been omitted for clarity. Ellipsoids are shown at 50% probability. rearrangement of that metallacyclobutane at the metal center would then generate the intermediate 14e nitrile-free syn alkylidene complex with the opposite configuration at the metal center. Inversion of configuration appears to be facile for Mo complexes that are stereogenic at the metal, as shown in ROMP studies with MAP initiators. NMR Studies of Mo(NAr) Derivatives. ¹H NMR studies of MAC complexes that contain a pyridine ligand (e.g., 4(3-Brpy) in Scheme 1) show that the complex is exclusively a syn alkylidene ($J_{\rm CH} \approx 125$ Hz; see SI). Similarly, ¹H NMR spectra of 4(PMe₂Ph) show a doublet alkylidene ¹H resonance at 12.47 ppm ($J_{HP} = 5.3 \text{ Hz}$), and the ³¹P NMR spectrum shows a single phosphorus resonance at 5.52 ppm. In neither case is there any evidence for observable "base-off" 14e complexes in solution, according to ¹H NMR studies at a total metal concentration of ~0.01 M at room temperature. However, both 4(3-Brpy) and 4(PMe₂Ph) can be activated toward cross-metathesis through addition of $B(C_6F_5)_3$ (vide infra), so some base must dissociate from the metal at room temperature in order eventually to be sequestered by $B(C_6F_5)_3$. The ${}^{1}H$ NMR spectrum of 4(t-BuCN) is significantly different from spectra of 4(3-Brpy) and 4(PMe₂Ph). In toluene-d₈ at 15 mM concentration and 22 °C, the spectrum of 4(t-BuCN) reveals a minor (19%), comparatively sharp alkylidene signal at 13.10 ppm and a major, fairly broad alkylidene signal at 12.42 ppm (Figure 2a). The position and shape of the resonance at 13.10 ppm are relatively independent of concentration, while the broad resonance moves upfield from 12.56 ppm at 52 mM to 12.31 ppm at 7.6 mM and also broadens further (Figure 2a). The 13.10 ppm peak is most intense (22%) in the 7.6 mM sample and weakest (3%) in the 52 mM sample. The J_{CH} values for these alkylidenes can be measured at high signal-to-noise levels (at 52 mM) and are found to be 152 Hz for the resonance at 13.10 ppm and 127 Hz for the upfield resonance. All data are consistent with the 13.10 peak being the alkylidene resonance for a 14e nitrile-free anti complex. We ascribe the broad and shifting upfield resonance to a mixture of syn-4(t-BuCN) and nitrile-free complex (syn-4)that interconvert on the NMR time scale as a consequence of the rapid dissociation of pivalonitrile from 4(t-BuCN). The relative amounts of syn-4(t-BuCN) and syn-4 in a sample of syn-44(t-BuCN) changes with total concentration in the expected manner (Figure 2a). Because an alkylidene can rotate readily Figure 2. ¹H NMR spectra in the alkylidene region of (a) ~0.01 M Mo(NAr)(CHCMe₂Ph)(OHMT)(Cl)(t-BuCN) in toluene-d₈ and (b) after removal of >95% of the t-BuCN. only in a 14e complex, 18 the intramolecular conversion of a 14e syn-alkylidene to an anti-alkylidene intermediate will compete with the bimolecular reaction of a 14e syn-alkylidene species with substrate. When 1 equiv of $B(C_6F_5)_3$ is added to an NMR sample of Mo(NAr)(CHCMe₂Ph)(OHMT)(Cl)(t-BuCN), or if t-BuCN is removed from a sample in toluene that is taken to dryness in vacuo at 22 °C in several cycles, the intensity of the 13.10 peak $(J_{\rm CH}$ = 152 Hz) increases to 41% of the total, and the less intense upfield resonance shifts to 11.71 ppm ($J_{CH} = 122 \text{ Hz}$) and sharpens (Figure 2b); less than 5% of the original t-BuCN is present in the sample shown in Figure 2b, according to this ¹H NMR spectrum. The resonance at 11.71 ppm (Figure 2b) can be ascribed to syn-4 whose resonance is slightly broadened by a small percentage of exchanging nitrile binding to it to give syn-4(t-BuCN). The spectrum shown in Figure 2b is unchanged between -80 and 25 °C. The same mixture of syn-4 and anti-4 is generated upon addition of 1 equiv of $B(C_6F_5)_3$ to $4(PPhMe_2)$. Finally, addition of 1 equiv of pivalonitrile or PPhMe2 to the mixture of syn-4 and anti-4 (Figure 2b) yields ¹H NMR spectra identical to the spectra of 4(t-BuCN) and 4(PMe₂Ph), respectively, at the same concentration. Addition of 6 equiv of pivalonitrile to the sample at 15 mM sample (Figure 2a) leads to sharpening and shifting of the syn resonance from 12.42 downfield to 12.79 ppm and broadening and shifting of the anti resonance from 13.10 to 13.41 ppm (now 13% of the total instead of 19%), consistent with pivalonitrile binding also to anti-4, although the equilibrium favors syn-4(t-BuCN). Therefore, in the presence of an additional 12 equiv of pivalonitrile, only one resonance at 12.81 ppm can be observed for a mixture of syn-4 and syn-4(t-BuCN) that contains a high percentage of syn-4(t-BuCN); the average resonance for anti-4 and anti-4(t-BuCN) is no longer observable (see SI). In summary, syn-4 and anti-4 have about the same energy in solution (Figure 2b). Pivalonitrile binds to both syn-4 and anti-4, but it binds to the syn isomer much more strongly than to the anti isomer. The rate of pivalonitrile exchange at a metal concentration of ~0.01 M is on the order of the NMR time scale at room temperature (Figure 2). From the position of the average syn-alkylidene resonance in the 7.6 mM sample we can estimate that the amount of syn-4 is ~45% of the mixture of interconverting syn-4 and syn-4(t-BuCN) at 7.6 mM in toluene- d_8 , or about 25% of the total concentration of 14e and 16e syn and anti complexes in solution. The mixture whose partial NMR spectrum is shown in Figure 2b begins to show signs of decomposition only after \sim 4 h in C_6D_6 at 22 $^{\circ}C_7$ but attempts to isolate either syn-4 or anti-4, or a mixture, in crystalline form so far have not been successful. Nevertheless, the ¹H NMR spectrum of the red-orange foam that is obtained upon removing solvent in vacuo from a mixture of syn-4 and anti-4 at 22 °C is unchanged. We considered the possibility that 14e anti-Mo(NAr)-(CHCMe₂Ph)(OHMT)Cl might form a dimer in solution with two bridging chlorides. In order to evaluate our proposal, we carried out DOSY experiments on the mixture of anti-4, syn-4, and syn-4(t-BuCN) at 22 °C in toluene- d_8 . We found that the hydrodynamic volumes of the anti and syn complexes are the same within experimental error, which would not be the case if Mo(NAr)(CHCMe₂Ph)(OHMT)Cl were a dimer (see SI). Therefore, we propose that anti-Mo(NAr)(CHCMe₂Ph)-(OHMT)Cl is a monomer in solution. Experiments analogous to those just described for Mo=NAr chloride complexes have been carried out for pyridine and acetonitrile adducts of Mo=NAd and Mo=N-t-Bu complexes reported previously, but the 14e MAC complexes generated in these cases are qualitatively much less stable toward decomposition in solution and therefore less amenable to study. Because Mo(NAr)(CHR')(OHMT)(Cl)(t-BuCN) is an effective (but much slower) catalyst than a Mo tert-butylimido or adamantylimido complex (vide infra), we propose that the behavior of other Mo nitrile complexes is similar to the behavior of Mo(NAr)(CHR')(OHMT)(Cl)(t-BuCN) in sol- Synthesis of W(N-t-Bu) MAC Complexes. Pyridinium chloride was used in the synthesis of W(NR)(CH-t-Bu)- $(py)_2Cl_2$ from $W(NR)_2(CH_2-t-Bu)_2$ (R = Ad or t-Bu). Therefore, we prepared W=NR complexes in order to compare their catalytic activities with Mo compounds. Neophylidene MAC complexes were prepared from W(N-t-Bu)₂(CH₂CMe₂Ph)₂ in a manner closely analogous to the preparation of Mo neopentylidene complexes. W(N-t-Bu)-(CHCMe₂Ph)(OHMT)(Cl)(py) (5(py)) was synthesized from W(N-t-Bu)(CHCMe₂Ph)(py)₂Cl₂ in 69% yield and $W(N-t-Bu)(CHCMe_2Ph)(OHMT)(Cl)(3-Brpy)$ (5(3-Brpy)) from W(N-t-Bu)(CHCMe₂Ph)(3-Brpy)₂Cl₂ in 51% yield (Figure 3). L = py, 3-Brpy, or t-BuCN Figure 3. General structure of W MAC complexes, 5(py), 5(3-Brpy), and 5(t-BuCN). Addition of $B(C_6F_5)_3$ to $W(N-t-Bu)(CHCMe_2Ph)(OHMT)$ Cl (5), followed by addition of pivalonitrile to the solution of 5, generated $W(N-t-Bu)(CHCMe_2Ph)(OHMT)(Cl)(t-BuCN)$ (5(t-BuCN)). Highly soluble 5 could not be isolated in crystalline form on the scale on which the reaction was performed, but is stable enough to prepare in solution. A ¹H NMR analysis of 5 showed a single alkylidene resonance at 8.24 ppm that we assign to the *syn* isomer ($J_{CH} = 117 \text{ Hz}$; $J_{WH} = 15$ Hz).¹⁷ An attempt to prepare 5(MeCN) through addition of acetonitrile to a solution of 5 led to formation of a mixture of 5(MeCN) and what we propose to be W(N-t-Bu)[NC(Me)=CHCMe₂Ph](OHMT)Cl (6; eq 1). Attempts to isolate 6 from $$\begin{array}{c} CMe_{2}Ph \\ H CCMe_{2}Ph \\ HMTO \\ W = N-f-Bu \\ NCMe \\ \end{array} \xrightarrow[N \to f-Bu]{} \begin{array}{c} CMe_{2}Ph \\ H CCMe_{2}Ph \\ Me \\ N-f-Bu \\ N \\ Me \\ N -f-Bu \\ HMTO \\ \end{array} \xrightarrow[N \to f-Bu]{} \begin{array}{c} CMe_{2}Ph \\ H CCMe_{2}Ph \\ Me \\ N \\ Clywing \\ N -f-Bu \\ HMTO \\ \end{array}$$ the mixture in pentane yielded colorless crystals of 5(MeCN), the structure of which was confirmed through an X-ray study (vide infra). 5(MeCN) could be converted into 6 in the presence of added acetonitrile, but upon removal of solvent in vacuo no 5(MeCN) reformed, according to ¹H NMR analysis, and 6 decomposed in C₆D₆ to yield HMTOH and unidentified metal-containing products. The proposed structure of 6 that was prepared through the use of isotopically labeled Me¹³CN is supported by NMR studies (2J13CH measurement and heteronuclear bond correlation NMR experiments; see SI). Only one configuration of the vinylimido ligand is observed in We propose that 6 is formed through insertion of the nitrile into the W=C bond to give an azametallacyclobutene intermediate (eq 1). However, because 5(MeCN) can be isolated, it is likely that 6 (or a MeCN adduct thereof) is formed from a bisacetonitrile complex (i.e., 5(MeCN)₂). We suggest that 5(t-BuCN) can be prepared because the azametallacyclobutene intermediate or $5(t-BuCN)_2$ do not form
readily for steric reasons. Reactions between high oxidation state alkylidenes and nitriles were first observed for various tantalum neopentylidene complexes; 19a,b these tantalum products were mixtures of *E* and *Z* isomers. We cannot entirely exclude the possibility that 6 is a 1-azametallacyclobut-4-ene instead of a vinylimido complex. 1-Aza-titanacyclobut-4-enes have been prepared in reactions in which intermediate Cp₂Ti= C=CH₂ (formed from decomposition of Cp₂Ti(CH=CH₂)-(CH₃)) is trapped by nitriles, ²⁰ and one such complex has been structurally characterized. An X-ray study of 5(MeCN) (Figure 4) showed it to have a structure analogous to that of 4(t-BuCN) (Figure 1), i.e., an approximate square pyramid ($\tau = 0.27^8$) with the alkylidene (C1) in the apical position and the acetonitrile (N2) bound trans to the chloride ligand. The M-N(2) distance is slightly shorter in the W complex (2.161(3) Å) than in the Mo complex (2.1732(11) Å), which is consistent with what is expected to be a stronger M-N bond for a third row metal (vs a second row metal), although that small bond length difference could also be attributed to greater steric crowding in the Mo complex. The acetonitrile is bent away from the OHMT ligand $(W1-N2-C21 = 167.9(3)^{\circ})$, and the imido ligand is tipped away from the syn alkylidene (W1-N1-C11 = $161.0(2)^{\circ}$), as one might expect on the basis of steric interactions between the terphenoxide and nitrile ligand and between the imido ligand and the syn alkylidene substituent, respectively. 1b,12 Synthesis of Mo(NC₆F₅) Complexes. Mo-based pentafluorophenylimido MAP complexes have proven to be especially efficient for Z-selective and E-selective cross-metaJournal of the American Chemical Society Figure 4. Structure of W(N-t-Bu)(CHCMe₂Ph)(OHMT)(Cl)-(MeCN). Hydrogen atoms, except on C1, have been omitted for clarity. Ellipsoids are shown at 50% probability. thesis reactions in which an electron-poor halogenated olefin is one of the olefin partners. 5,6 If monoaryloxide monochloride or monobromide complexes are the most active catalysts in these reactions, it would be highly desirable to find a more efficient route to them. Initial syntheses of Mo(NC₆F₅) MAC complexes involved the protonation of MAP complexes with pyridinium halide acids, as described for the early syntheses of Mo(NR) MAC complexes (R = t-Bu and Ad). This sequence requires the synthesis of a bispyrrolide complex and subsequent reactions that involve protonations with pyridinium halides and give products in low yields. Therefore, such a route to $Mo(NC_6F_5)(CHMe_2Ph)(OHMT)(X)(L)$ complexes where X is either Cl or Br is restricted to those where L is either pyridine or 3-bromopyridine. Finally, our attempts to adapt the strategy of using a mixture of pentafluorophenol and bipy to generate Mo(NC₆F₅) alkylidene complexes have been unsuccessful. Our search for alternative routes to monochloride complexes led the discovery that 2 equiv of Me₂PhPHCl reacts smoothly with $Mo(NC_6F_5)_2(CH_2CMe_2Ph)_2$ to yield $C_6F_5NH_2$, PhCMe₃, and the dichlorobisphosphine alkylidene derivative, Mo- $(NC_6F_5)(CHCMe_2Ph)L_2Cl_2$ (7, L = PMe₂Ph), as a single isomer that contains a plane of symmetry and a single type of phosphine, consistent with the structure shown in eq 2. So far, we have found that addition of either Ph₂MePHCl or Me₃PHCl to $W(NC_6F_5)_2(CH_2CMe_2Ph)_2$ or $Mo(NR)_2(CH_2CMe_2Ph)_2$ $(R = 2,6-Me_2C_6H_3 \text{ or } 2,6-i-Pr_2C_6H_3)$ led to complex mixtures that do not contain any significant quantities of alkylidenes, according to ¹H NMR analysis. Also, treatment of Mo(N-t-Bu)₂(CH₂-t-Bu)₂ with phosphonium halides generated a complex mixture of alkylidene-containing compounds along with other unidentified products. As has been reported previously,²¹ pyridinium chlorides do not deliver a bispyridine analogue of 7. In spite of these unfavorable preliminary results, we are hopeful that other successful syntheses of analogues of 7 from $Mo(NC_6F_5)_2(CH_2CMe_2Ph)_2$ or Mo- $(NC_6F_5)_2(CH_2CMe_3)_2$ can be developed, or that 7 will emerge as a versatile synthetic intermediate for other classes of $Mo(NC_6F_5)$ alkylidene complexes. Addition of either LiOHMT or LiOHIPT to 7 leads to the MAC complexes as the phosphine adducts, Mo(NC₆F₅)-(CHCMe₂Ph)(OHMT)(Cl)(PMe₂Ph) (8a(PMe₂Ph)) and Mo(NC₆F₅)(CHCMe₂Ph)(OHIPT)(Cl)(PMe₂Ph) (8b(PMe₂Ph)) (eq 3). Syntheses leading to 8a(PMe₂Ph) and 8b(PMe₂Ph) in four steps from molybdate are currently the most efficient way to prepare Mo(NC₆F₅) alkylidene complexes. An X-ray study of 8b(PMe₂Ph) (Figure 5) revealed a structure analogous to those of 4(t-BuCN) (Figure 1) and Figure 5. Structure of $Mo(NC_6F_5)(CHCMe_2Ph)(OHIPT)(Cl)$ -(PMe₂Ph). Hydrogen atoms, except on C1, have been omitted for clarity. Ellipsoids are shown at 50% probability. **5**(MeCN) (Figure 4), i.e., a square pyramid ($\tau = 0.10$) with the alkylidene (C1) in the apical position and the phosphine bound trans to the chloride. The imido ligand is bent away from the syn alkylidene substituent, as expected (Mo1-N1-C11 = 160.67(10)°). The Mo-P distance (2.511 Å) is analogous to the W-P distance in WO(CH-t-Bu)(OHIPT)(Cl)(PPhMe₂) (2.528 Å). The seven crystallographically characterized monoaryloxide halide complexes (see Table S2 in SI) are all OHMT or OHIPT complexes in which the M-O distance varies from 1.969 to 1.992 Å. Compounds 8a(PMe₂Ph) and 8b(PMe₂Ph) have sharp, concentration-independent alkylidene doublet resonances in their ¹H spectra, consistent with no significant degree of dissociation of phosphine in solution. However, the phosphine can be removed from 8a(PMe₂Ph) and 8b(PMe₂Ph) with $Ph_3CB(C_6F_5)_4$ or $B(C_6F_5)_3$ (in C_6D_6) to yield the respective phosphine-free 14e complexes, 8a and 8b in solution, according to NMR studies. The reactions are complete in ~1 h at 22 °C and 0.1 M concentration, and ¹H NMR spectra of either 8a or 8b in C_6D_6 at a concentration of ~0.1 M show little change after 6 h. We propose that removal of the phosphine is successful because both $Ph_3CB(C_6F_5)_4$ and $B(C_6F_5)_3$ are soluble in benzene, each binds phosphine rapidly and essentially irreversibly to give Lewis acid adducts, and the adducts do not interfere with the metathesis reaction. Reactivities of Monohalide Complexes in the ROCM of Cyclooctene and Z-1,2-Dichloroethylene. As a test reaction we investigated the ROCM of cis-cyclooctene (COE) and Z-1,2-dichloroethylene (DCE; 1.25 equiv) in C_6D_6 (eq 4). Cyclooctene alternatively can be polymerized in the test reaction, but poly(COE) so formed can also be "depolymerized". The normalized ratios of COE (A), poly(COE) (B), and ClCH=CH(CH₂)₆CH=CHCl (C) were followed by ¹H NMR over a period of up to 24 h (C_6D_6 , 22 °C, 3 mM initiator concentration). Relevant data are presented in Tables 1-4; the complete set of results can be found in the SI. Table 1. ROCM of A with DCE To Give B and/or C | run, initiator ^a | $x/y/z^b$ | | |---|---------------------------|---------------------------| | | 2 min | 10 min | | 1, Mo(NAd)(CHR')(OHIPT)(Cl)(MeCN) | 0/0/100 | 0/0/100 | | 2, Mo(NR)(CHR)(OHIPT)(Cl)(MeCN) | 0/0/100 | 0/0/100 | | 3, Mo(NR)(CHR)(OHIPT)(Cl)(MeCN) (1%) | 1/24/75 | 1/24/75 | | 4, Mo(NR)(CHR)(OHIPT)(Cl)(3-Brpy) | 32/32/36 | 0/24/75 | | 5, Mo(NR)(CHR)(OHMT)(Br)(MeCN) | 0/4/96 | 0/4/96 | | 6, Mo(NR)(CHR)(OTTBT)(Cl)(MeCN) | 0/9/91 | 0/5/95 | | 7, Mo(NR)(CHR)(OTTBT)(Cl)(3-Brpy) | 66/33/1 | 2/57/41 | | 8, Mo(NAd)(CHR')(OHMT)(Cl)(MeCN) | 0/15/85 | 0/6/94 | | 9, Mo(NR)(CHR)(OHMT)(Cl)(MeCN) | 0/6/94 | 0/5/95 | | | 1 h | 6 h | | 4, Mo(NR)(CHR)(OHIPT)(Cl)(3-Brpy) | 0/0/100 | 0/0/100 | | 7, Mo(NR)(CHR)(OTTBT)(Cl)(3-Brpy) | 0/8/92 | 0/0/100 | | 10, Mo(NAr)(CHR')(OHMT)(Cl)(RCN) | 0/7/93 | 0/0/100 | | 11, Mo(NAr)(CHR')(OHMT)(Cl)(RCN) (1%) | 0/15/85 | 0/2/98 | | a R = t -Bu; R' = CMe ₂ Ph; Ar = 2,6-diisopropylp B/%C by 1 H NMR. | ohenyl. ^b x/y/ | $z' = \% \mathbf{A} / \%$ | In Table 1 we list some of the most successful reactions in which no $B(C_6F_5)_3$ was added. Six transformations produced greater than 94% C in 10 min or less; four more (runs 4, 7, 10, and 11) reached >98% in 6 h. When a 1% loading was used (run 3) a lower yield of C was observed after 2 min with the yield remaining unchanged, consistent with earlier catalyst death at 1% loading compared to 5% loading. In contrast to the parent pyridine ligand, 3-bromopyridine is labile enough to give satisfactory yields (run 4 after 1 h). The reaction rate is approximately the same when the catalyst contains OTTBT $(O-2,6-(3,5-(t-Bu)_2C_6H_3)_2C_6H_3;^6$ run 6) instead of OHMT or OHIPT. (It should be noted that the unsuccessful elemental analyses of the two OTTBT neopentylidene complexes suggest that they decompose more readily than analogous OHMT or OHIPT complexes; see SI for a complete report.) Mo(NAr)-(CHR')(OHMT)(Cl)(RCN) is a slower catalyst that requires 6 h to reach full conversion to C (run 10); we attribute this difference to the steric demand of the Ar group. At 1% loading of Mo(NAr)(CHR')(OHMT)(Cl)(RCN) C was obtained in 98% yield in 6 h (run 11); this transformation is slower than that in run 3, but the intermediates seem to survive longer under the reaction conditions. The conversion in the case of Mo(NC₆F₅)(CHR')(OHMT)(Cl)(py) (run 29 in the SI) is limited by pyridine being more strongly bound to a more electron-deficient metal. In Table 2 we summarize the results of the attempted ROCM reactions in the absence of $B(C_6F_5)_3$ in which no C was Table 2. Attempted ROCM of A with DCE To Give B and/ or Ca | run/initiator | 1 h | |--|---------| | 12, Mo(NAr)(CHR')(OHMT)(Cl)(PMe ₂ Ph) | 100/0/0 | | 13, Mo(NR)(CHR)(OHIPT)(Cl)(1-Me-imid) | 100/0/0 | | 14, Mo(NC ₆ F5)(CHR')(OHMT)(Cl)(PPhMe ₂) | 100/0/0 | | 15, Mo(NC ₆ F5)(CHR')(OHIPT)(Cl)(PPhMe ₂) | 100/0/0 | | 16,
Mo(NAr)(CHR')(OHMT)(Cl)(3-Brpy) | 99/1/0 | | 17, Mo(NAd)(CHR')(OHMT)(Br)(py) | 17/83/0 | | 18, Mo(NC ₆ F5)(CHR')(ODFT)(Cl)(3-Brpy) | 89/11/0 | | 19, W(NR)(CHR')(OHMT)(Cl)(3-Brpy) | 100/0/0 | | 20, W(NR)(CHR')(OHMT)(Cl)(RCN) | 80/20/0 | | See Table 1 footnotes. | | formed after 1 h. These experiments involve Mo catalysts that contain relatively strongly bound 2e donor ligands (PMe₂Ph, 1methylimidazole, or pyridine in the bromide complex) or 3bromopyridine in Mo(NAr) or Mo(NC₆F₅) complexes. We propose that the 3-Brpy and t-BuCN ligands in tungsten tertbutylimido complexes are not sufficiently labile to produce viable quantities of 14e MAC complexes. The combination of NC_6F_5 and ODFT $(O-2,6-(C_6F_5)_2C_6H_3)$ ligands limits the lability of 3-Brpy in run 18 (Table 2). In Table 3 we show the results of experiments involving reactions that were initiated or accelerated through addition of B(C₆F₅)₃ as a Lewis acid (LA) to scavenge the 2e neutral ligand. In most cases no conversion was observed in the absence of $B(C_6F_5)_3$ (runs 12 and 14–18 in Table 2). Mo(NR)(CHR)(OHIPT)(Cl)(3-Brpy) requires 1 h to reach Table 3. ROCM of A with DCE To Give B and/or C after Addition of $B(C_6F_5)_3$ (+LA)^a | run, initiator | 30 min | 60 min | |--|------------------|---------| | 21, Mo(NAr)(CHR')(OHMT)(Cl)(3-Brpy) + LA | 0/12/87 | 0/5/95 | | 22, $Mo(NAr)(CHR')(OHMT)(Cl)(PMe_2Ph) + LA$ | 0/7/93 | 0/4/96 | | 23, $Mo(NC_6F_5)(CHR')(ODFT)(Cl)(3-Brpy) + LA$ | 0/64/36 | - | | 24, $Mo(NC_6F_5)(CHR')(OHMT)(Cl)(PPhMe_2) + LA$ | 0/0/100 | _ | | 25, $Mo(NC_6F_5)(CHR')(OHIPT)(Cl)(PPhMe_2) + LA$ | 0/1/99 | 0/0/100 | | 26, $Mo(NAd)(CHR')(OHMT)(Br)(py) + LA$ | 0/5/95 | _ | | 27, $W(NR)(CHR')(OHMT)(Cl)(3-Brpy) + LA$ | 72/28/0 | 68/32/0 | | 28, Mo(NR)(CHR)(OHIPT)(Cl)(3-Brpy) + LA | 0/0/100 in 2 min | | ^aSee Table 1 footnotes. full conversion (Table 1, run 4), but full conversion is reached in 2 min in the presence of $B(C_6F_5)_3$ (run 28 in Table 3). It should be noted that even PMe2Ph could be scavenged from Mo (runs 24 and 25). Either 3-bromopyridine cannot be scavenged from W or another fundamental complication involving the three reactions with a W-based complex is the cause of the observed limited activity. At this point we favor the first explanation. An important aspect of the test reaction is the stereochemistry of C. High-field ¹H NMR spectra (500 MHz or more in C_6D_6 or $CDCl_3$) are sufficient for measuring the ratio of Z_1Z_2 C and E.Z-C in the absence of E.E-C. but GC studies are required when E,E-C is present. Experiments with a Mo(N-t-Bu) or Mo(NAd) catalysts showed a strong preference for formation of Z,Z-C (>98%), according to ¹H NMR spectra. The stereochemical purity of C according to GC analysis was found to be >96% Z,Z-C in four experiments (runs 1, 2, 19, and 28 in Table 4). A value of 99.7% Z,Z-C with 0.3% Z,E-C implies Table 4. Stereoselectivity of ROCM: Product Distributions Determined by GC (Selected Runs) | run, initiator | <i>Z,Z-</i> C | <i>Z,E-</i> C | <i>E,E-</i> C | |---|----------------------|----------------------|----------------------| | 1, Mo(NAd)(CHR')(OHIPT)(Cl)(MeCN) | 99.7 | 0.3 | ~0 | | 2, Mo(NR)(CHR)(OHIPT)(Cl)(MeCN) | 99.5 | 0.5 | ~0 | | 19, $Mo(NC_6F_5)(CHR')(OHIPT)(Cl)(PPhMe_2) + LA$ | 96.2 | 3.8 | ~0 | | 28, Mo(NR)(CHR)(OHIPT)(Cl)(3-Brpy) + LA | 99.5 | 0.5 | ~0 | | 10 Mo(NAr)(CHR')(OHMT)(Cl)(RCN) | 61.3 | 34.6 | 4.1 | | 20 $Mo(NC_6F_5)(CHR')(OHMT)(Cl)(PPhMe_2) + LA$ | 66.4 | 30.4 | 3.2 | | 21 Mo(NAr)(CHR')(OHMT)(Cl)(3-Brpy) + LA | 63.3 | 33.3 | 3.4 | an overall selectivity of 99.8% Z- selectivity per C=C bond. High selectivities are not limited to Mo(NAd) or Mo(N-t-Bu) catalysts, as shown by the 96.2% Z,Z selectivity with which C is generated with Mo(NC₆F₅)(CHR')(OHIPT)(Cl)(PPhMe₂) in the presence of $B(C_6F_5)_3$ (run 19). The importance of the aryloxide to the level of stereoselectivity is manifested in the results for the analogous reaction involving Mo(NC₆F₅)- $(CHR')(OHMT)(Cl)(PPhMe_2)$ (66.4:30.4:3.2 $Z_1Z_2Z_2E_2E_2E_2E_2$). It is therefore clear that selectivity for forming Z,Z-C product is high primarily (but not exclusively) when Mo(N-t-Bu) or Mo(NAd) complexes are the initiators, or when OHIPT is the aryloxide ligand, or both. In the case of Mo(NAr)(CHR')-(OHMT)(Cl)(t-BuCN) (run 10), the NAr ligand is too large relative to the OHMT ligand to allow exclusive formation of metallacyclobutane intermediates where all substituents are oriented toward the imido ligand. An interesting question is how much faster are the test reactions with monochloride complexes versus those initiated by a pyrrolide complex. Mo(NAd)(CHCMe₂Ph)(OHMT)-(Pyr) was found to be a relatively slow initiator, with no C being formed within the first 2 min (63/32/0) (%A/%B/%C), but 81% C was generated (0/19/81) after 1 h with a Z,Z:Z,E ratio of 98.5:1.5 (GC analysis). In contrast, the composition of the product mixture in the case of Mo(NAd)(CHCMe₂Ph)-(OHMT)(Cl)(MeCN) was 0:12:82 in 2 min, and the selectivity was >98:2 Z,Z:Z,E (NMR analysis). Therefore, we can deduce that the test reaction is at least ~100 times faster when Mo(NAd)(CHCMe₂Ph)(OHMT)(Cl)(MeCN) is the initiator compared to Mo(NAd)(CHCMe₂Ph)(OHMT)(Pyr) as the initiator. However, in spite of the >98% stereoselectivities for both reactions, we cannot conclude that Mo(NAd)(CHCMe₂Ph)(OHMT)Cl (formed in situ) is solely responsible for the activity of Mo(NAd)(CHCMe₂Ph)-(OHMT)(Pyr). We ascribe the high activities in the test reaction to circumstances in which a significant amount of base-free 14e alkylidenes is present, i.e., either a Mo=CHCl or a Mo= CH(CH₂)₈CH=CHCl intermediate. Of course, we cannot determine how much of what type of base-free complex is present in each circumstance under catalytic conditions at any specific time, but we are confident that the observations described in an earlier section for Mo(NAr)(CHCMe₂Ph)-(OHMT)(Cl)(t-BuCN) can be generalized in a qualitative ## CONCLUSIONS We conclude that monoaryloxide halide complexes of Mo or W with the general formula M(NR)(CHR')(OAryl)(X)(L) can be prepared in a process involving intermediates that contain pentafluorophenoxide and 2,2'-bipyridine. Addition of Me₂PhPHCl to Mo(NC₆F₅)₂(CH₂CMe₂Ph)₂ leads to Mo- $(NC_6F_5)(CHR')(PMe_2Ph)_2(Cl)_2$ from which $Mo(NC_6F_5)$ -(CHR')(OAryl)(Cl)(PMe2Ph) is prepared readily. When L is acetonitrile or pivalonitrile, rapid and reversible loss of nitrile in solution affords a mixture enriched in the nitrile-free 14e M(NC₆F₅)(CHR')(OAryl)X complex. Molybdenum complexes are highly active catalysts for the cross-metathesis of cyclooctene and Z-1,2-dichloroethylene to give almost exclusively Z,Z-ClCH=CH(CH₂)₆CH=CHCl in several cases. Complexes where a neutral 2e ligand is strongly bound to the metal are poor initiators, but these complexes can be activated through addition of a suitable Lewis acid. In general, increased steric crowding at the metal in arylimido complexes relative to alkylimido complexes results in the arylimido complexes being more stable and longer-lived under catalytic conditions, but also less reactive and Z-selective. Mo(NAr)-(CHR')(OHMT)Cl complexes can be characterized in solution as a mixture of anti and syn isomers, but attempts to crystallize the 14e variants were unsuccessful. Tungsten catalysts are inferior catalysts either because the donor is bound too tightly and/or the W=C bond reacts with a nitrile to yield a vinylimido complex. Because Mo(NR)(CHX)(OAryl)X, a necessary cross-metathesis intermediate, has not been observed through NMR studies, we propose that Mo=CHCl complexes are relatively unstable and react rapidly with cyclooctene in the chosen test reaction. ### **■ EXPERIMENTAL SECTION** General Considerations. All air- and moisture-sensitive materials were manipulated under a nitrogen atmosphere in a Vacuum Atmospheres glovebox or on a dual-manifold Schlenk line. Glassware was either oven-dried or flame-dried prior to use. Acetonitrile, benzene, CH2Cl2, Et2O, 1,2-dimethoxyethane, and toluene were degassed, passed through activated alumina columns, and stored over 4 Å Linde-type molecular sieves prior to use. Pentane was washed with H2SO4, followed by water and a saturated solution of aqueous NaHCO₃, and dried over CaCl₂ pellets for at least 2 weeks prior to use in the solvent purification system. Deuterated solvents were dried over 4 Å Linde-type molecular sieves prior to use. ¹H NMR spectra were obtained on 400 or 500 MHz spectrometers and ¹³C NMR spectra on 101, 125, or 151 MHz machines. Chemical shifts for ¹H and ¹³C spectra are reported as parts per million relative to tetramethylsilane and referenced to the residual ¹H or ¹³C resonances of the deuterated solvent (1 H δ : benzene 7.16, chloroform 7.26, methylene chloride 5.32; $^{13}\mathrm{C}$ δ : benzene 128.06, chloroform 77.16, methylene chloride 53.84). Gas chromatography was performed on an Agilent system equipped with an HP-5 column (ID 320 µm, film 0.25 µm, length 30 m). Pyridinium chloride was purchased from Sigma-Aldrich or Alfa Aesar and sublimed prior use. TMSCl was purchased from Alfa Aesar and degassed by a freeze-pump-thaw method prior to use. B(C₆F₅)₃ was purchased from Strem and sublimed prior to use. Pivalonitrile and 1-methylimidazole were purchased from Ālfa Aesar, distilled over CaH, and stored over 4 Å Linde-type molecular sieves prior to use. LiOAr was prepared by addition of 1 equiv of n-butyllithium to a cold pentane or Et₂O solution of ArOH, and the solid was collected on a glass frit, washed with pentane, and dried in vacuo. Mo(NR)- $(CHCMe_2R')(bipy)Cl_2$ (R = Ad or t-Bu, R' = Me or Ph), $Mo(NR)(CHCMe_2R')(OHMT)(MeCN)Cl$ (R = Ad or t-Bu, R' = Me or Ph), $Mo(NR)(CHCMe_2R')(OHMT)(MeCN)Cl$ (R = Ad or t-Bu, R' = Me or Ph), and Mo(N-t-Bu)(CH-t-Bu)(OHIPT)(3-Brpy)Clwere prepared as reported elsewhere.
W(N-t-Bu)₂(py)₂Cl₂, (NAd)(CHCMe₂Ph)(Pyr)₂, ²² Mo(NAd)(CHCMe₂Ph)(Pyr)-(OHMT), ²³ and $Mo(NC_6F_5)(CHCMe_2Ph)(ODFT)(Me_2Pyr)$ -(MeCN)²¹ were prepared as described in the literature. Mo(NAd)(CHCMe₂Ph)(OHMT)(Cl)(py). Mo(NAd)(CHCMe₂Ph)-(Pyr)(OHMT) (345 mg, 0.446 mmol) and pyridinium chloride (59 mg, 0.510 mmol, 1.14 equiv) were suspended in toluene (5 mL). The reaction mixture was stirred at 22 °C for 2 h and filtered through Celite. The Celite was washed with toluene (5 mL), and the combined filtrate was concentrated to dryness. The residue was recrystallized by layering a CH₂Cl₂ solution (1.5 mL) with *n*-pentane (6 mL) at -30 °C. The resulting off-white crystals were collected by filtration and dried under reduced pressure to afford the title compound (189 mg, 0.230 mmol, 52%). Anal. Calcd for C₄₉H₅₇ClMoN₂O: C, 71.65; H, 6.99; N, 3.41. Found: C, 71.95; H, 7.27; N, 3.16. Mo(N-t-Bu)(CH-t-Bu)(OTTBT)(CI)(MeCN). Mo(N-t-Bu)(CH-t-Bu)-(Cl)₂(bipy) (416 mg, 0.896 mmol, 1.00 equiv) was suspended in Et₂O (50 mL), and the mixture was chilled to -25 °C. A solution of LiOTTBT (452 mg, 0.896 mmol, 1.00 equiv) and ZnCl₂ (122 mg, 0.896 mmol, 1.00 equiv) in THF (10 mL) was added. The mixture was stirred at 22 °C for 4 h and filtered through Celite. The filtrate was taken to dryness in vacuo to give a brown foam. The brown foam was extracted with pentane (30 mL), and the extract was filtered through Celite. Acetonitrile (0.1 mL) was added to this brown pentane solution. After the mixture was stirred for 1 h, the resulting brown slurry was taken to dryness. The residue thus obtained was triturated with pentane (~2 mL), and the mixture was chilled to −25 °C for 12 h. The resulting solid was collected by filtration and washed with cold pentane (~1 mL) to give Mo(N-t-Bu)(CH-t-Bu)(OTTBT)(Cl)-(MeCN) (510 mg, 71% yield) as a tan solid. Anal. Calcd for C₄₆H₆₇ClMoN₂O: C, 68.92; H, 8.62; N, 3.58. Found: C, 68.04; H, 8.52; N, 3.44. (See SI for a complete set of unsuccessful elemental Mo(N-t-Bu)(CH-t-Bu)(OTTBT)(Cl)(3-Brpy). Mo(N-t-Bu)(CH-t-Bu)-(bipy)Cl₂ (233 mg, 0.500 mmol, 1.00 equiv) was suspended in Et₂O (50 mL), and the mixture was chilled to −25 °C in the glovebox freezer. The suspension was treated slowly with a solution of LiOTTBT (238 mg, 0.500 mmol, 1.00 equiv) and ZnCl₂ (68 mg, 0.500 mmol, 1.00 equiv) in THF (10 mL). After being stirred at 22 °C for 4 h, the reaction mixture was filtered through Celite and concentrated to give a brown foam. The brown foam was extracted with pentane (30 mL), and the extract was filtered through Celite to give a brown solution to which 3-bromopyridine (48 μ L, 0.500 mmol, 1.00 equiv) was added. After being stirred for 1 h, the resulting slurry was concentrated to dryness. The residue thus obtained was triturated with pentane (~2 mL) and chilled to −25 °C overnight. The resulting solid was collected by filtration and washed with cold pentane (~1 mL) to afford Mo(N-t-Bu)(CH-t-Bu)(OTTBT)(Cl)(3-Brpy) (292 mg, 64% yield) as a pale pink solid. Anal. Calcd for C₄₈H₆₈BrClMoN₂O: C, 64.03; H, 7.61; N, 3.11. Found: C, 62.75; H, 7.41; N, 3.09. (See SI for a complete set of unsuccessful elemental analyses.) $W(N-t-Bu)(CHCMe_2Ph)(OHMT)(CI)(py)$. A solution of Me₂PhCCH₂MgCl (0.5 M, 7.2 mL, 3.6 mmol) in Et₂O was added to a-30 °C solution of W(N-t-Bu)₂(py)₂Cl₂ (1.0 g, 1.8 mmol) in 40 mL of Et₂O. After being stirred at 22 $^{\circ}\text{C}$ for 15 h, the mixture was filtered through a pad of Celite, and the Celite was further washed with several portions of Et₂O. The solvent was removed from the filtrate in vacuo to afford a yellow oil (750 mg, 70% yield) whose ¹H and ¹³C NMR spectra are consistent with it being W(N-t-Bu)₂(CH₂CMe₂Ph)₂ (and by analogy with $W(N-t-Bu)_2(CH_2t-Bu_3)_2$. W(N-t-Bu)₂(CH₂CMe₂Ph)₂ (500 mg, 0.84 mmol) was dissolved in Et₂O (20 mL), and the solution was cooled to -30 °C in the glovebox freezer. Pyridinium chloride (291 mg, 2.52 mmol) was added, and the mixture was stirred at 22 °C for 18 h. The color of the solution changed from yellow to brown, and a precipitate formed. The mixture was filtered through a pad of Celite, and the Celite was further washed with toluene several times. The solvent was removed from the filtrate in vacuo to yield a yellow residue, which was dissolved in a minimum of toluene and poured into pentane (50 mL). The yellow precipitate consisting of W(N-t-Bu)(CHCMe₂Ph)(py)₂Cl₂ (223 mg, 43% yield) was collected by filtration and used directly in the next step. W(N-t-Bu)(CHCMe₂Ph)(py)₂Cl₂ (300 mg, 0.487 mmol) and LiOHMT (180 mg, 0.536 mmol) were dissolved in benzene (15 mL) in a 50 mL Schlenk bomb. The bomb was heated at 80 °C for 15 h and then cooled to 22 $^{\circ}\text{C}.$ The resulting mixture was filtered through a pad of Celite on a glass frit. Volatiles were removed from the filtrate in vacuo. Pentane was added to the mixture and removed in vacuo twice to give the product as a yellow powder, affording 280 mg of the desired product (69% yield). Anal. Calcd for C₄₃H₅₁ClN₂OW: C, 62.14; H, 6.18; N, 3.37. Found: C, 62.65; H, 6.21; N, 3.12. This compound is analogous to W(N-t-Bu)(CH-t-Bu)(OHMT)(Cl)(py), which was synthesized by the same method and was analyzed successfully.11 $W(N-t-Bu)(CHCMe_{2}Ph)(OHMT)(CI)(3-Brpy)$. W(N-t-Bu)₂(CH₂CMe₂Ph)₂ (500 mg, 0.84 mmol) was dissolved in Et₂O (20 mL), and the solution was allowed to cool to −30 °C. 3-Bromopyridinium chloride (490 mg, 2.52 mmol) was added, and the mixture was stirred at 22 °C for 12 h. The mixture was filtered through a pad of Celite, and the Celite was further washed three times with toluene. The solvent was removed from the filtrate in vacuo to give a yellow residue, which was dissolved in a minimum of toluene and poured into pentane (50 mL). The resulting yellow precipitate consisting of W(N-t-Bu)(CHCMe₂Ph)(3-Brpy)₂Cl₂ (356 mg, 55% yield) was collected by filtration and used directly in the next step. W(N-t-Bu)(CHCMe₂Ph)(3-Brpy)₂Cl₂ (100 mg, 0.129 mmol) and LiOHMT (47.8 mg, 0.142 mmol) were dissolved in benzene (10 mL) in a 50 mL Schlenk bomb. The bomb was heated at 80 °C for 15 h and then allowed to cool to 22 °C. The resulting mixture was filtered through a pad of Celite on a glass frit. All solvents were removed from the filtrate in vacuo. Pentane was added to the mixture and removed in vacuo twice to remove excess benzene to afford W(N-t-Bu)-(CHCMe₂Ph)(OHMT)(Cl)(3-Brpy) (60 mg, 51% yield) as a yellow W(N-t-Bu)(CHCMe₂Ph)(OHMT)(Cl)(3-Brpy) has also been prepared from W(N-t-Bu)(CHCMe₂Ph)(OHMT)(Cl)(py). B(C₆F₅)₃ (67.6 mg, 0.132 mmol) was added to a solution of W(N-t-Bu)(CHCMe₂Ph)(OHMT)(Cl)(py) (100 mg, 0.12 mmol) in benzene (5 mL). The reaction mixture was stirred at 22 °C for 1 h, and the solvents were removed from the mixture in vacuo. Pentane was added and removed in vacuo twice to remove benzene. Pentane was added, and the mixture was filtered through a pad of Celite on a glass frit. The solvents were removed in vacuo to form a sticky yellow solid, which was dissolved in pentane (2 mL) and treated with 3bromopyridine (13 μ L, 0.13 mmol). The mixture was stirred at 22 °C for 1 h, and the resulting yellow precipitate (52.4 mg, 48%) was collected by filtration. Anal. Calcd for C₄₃H₅₀WBrClON₂: C, 56.75; H, 5.54; N, 3.08. Found: C, 56.44; H, 5.28; N, 2.85. $W(N-t-Bu)(CHCMe_2Ph)(OHMT)(CI)(t-BuCN)$. B(C₆F₅)₃ (271 mg, 0.53 mmol) was added to a solution of W(N-t-Bu)(CHCMe₂Ph)-(OHMT)(Cl)(py) (400 mg, 0.48 mmol) in benzene (10 mL). The mixture was stirred at 22 °C for 1 h, and the solvents were removed from the mixture in vacuo. Pentane was added and removed in vacuo twice to remove benzene. Pentane was added, and the mixture was filtered through a pad of Celite on a glass frit. The volatiles were removed in vacuo to form a sticky yellow solid. The solid was dissolved in pentane (2 mL), and pivalonitrile (66 µL, 0.50 mmol) was added. The mixture was stirred at 22 °C for 1 h. The yellow precipitate (256 mg, 64% yield) was collected by filtration. Anal. Calcd for C₄₃H₅₅WClON₂: C, 61.84; H, 6.64; N, 3.35. Found: C, 61.39; H, 6.27; N, 3.19. Attempted synthesis of W(N-t-Bu)(CHCMe₂Ph)(OHMT)(CI)-(MeCN). $B(C_6F_5)_3$ (54.3 mg, 0.106 mmol) was added to a solution of W(N-t-Bu)(CHCMe₂Ph)(OHMT)(Cl)(py) (80 mg, 0.096 mmol) in benzene (3 mL). The mixture was stirred at 22 °C for 1 h, and the solvents were removed from the mixture in vacuo. Pentane was added, and the mixture was subjected to vacuum twice to remove benzene. Pentane was added, and the mixture was filtered through a pad of Celite on a glass frit. The solvents were removed in vacuo to form a sticky vellow solid. The solid was dissolved in pentane (1 mL), and acetonitrile (7.5 μ L, 0.144 mmol) was added. The mixture was stirred at 22 $^{\circ}\text{C}$ for 10 min. The pale-yellow precipitate (35 mg, 46%) was collected by filtration. A ¹H NMR spectrum showed this product to be a mixture of W(N-t-Bu)(CHCMe2Ph)(OHMT)(MeCN)Cl and what we propose to be W(N-t-Bu)[NC(Me)=CHCMe2Ph](OHMT)Cl. Anal. Calcd for C₄₀H₄₀WClON₂: C, 60.57; H, 6.23; N, 3.53. Found: C, 60.66; H, 6.07; N, 3.33. Attempted isolation of W(N-t-Bu)[NC(Me)=CHCMe₂Ph]-(OHMT)Cl from the mixture in pentane yielded colorless crystals of W(N-t-Bu)(CHCMe2Ph)(OHMT)(Cl)(MeCN), an X-ray study of which was carried out as described above (see SI for details). W(N-t-Bu)(CHCMe₂Ph)(OHMT)(Cl)(MeCN) can be converted into W(N-t-Bu)[NC(Me)=CHCMe₂Ph](OHMT)Cl in the presence of acetonitrile, but upon solvent removal in vacuo no W(N-t-Bu)(CHCMe₂Ph)(OHMT)(Cl)(MeCN) reformed, according to a ¹H NMR spectrum; however, W(N-t-Bu)[NC(Me)=CHCMe₂Ph]-(OHMT)Cl decomposed in C₆D₆ with time to yield unidentified products, including HMTOH. $Mo(NAr)(CHCMe_2Ph)(bipy)(OC_6F_5)_2$. $Mo(NAr)_2(CHCMe_2Ph)_2$ (900 mg, 1.26 mmol) was dissolved in Et₂O (20 mL). The solution was cooled to -25 °C in a freezer and treated with a prechilled solution of pentafluorophenol (1.16 g, 6.30 mmol) in Et₂O (10 mL). The resulting orange solution was stirred
at 22 °C for 2 h and then treated with solid bipy (217 mg, 1.39 mmol) in one portion. The mixture was refluxed for 5 h. The volatiles were removed in vacuo, and the resulting solid was washed with a mixture of Et₂O and pentane. The solid was collected by filtration to give Mo(NAr)(CHCMe₂Ph)-(bipy)(OC₆F₅)₂ (890 mg, 76%) as a yellow solid which was recrystallized from a mixture of Et₂O and pentane. Anal. Calcd for C₄₄H₃₇F₁₀MoN₃O₂: C, 57.09; H, 4.03; N, 4.54. Found: C, 57.09; H, 4.00; N, 4.40. Mo(NAr)(CHCMe₂Ph)(bipy)Cl₂. Mo(NAr)(CHCMe₂Ph)- $(OC_6F_5)_2(bipy)$ (500 mg, 0.54 mmol) was dissolved in CH_2Cl_2 (20 mL) and treated with TMSCl (0.68 mL, 5.4 mmol). After 15 h the volatiles were removed in vacuo. Et₂O was added to the yellow solid, which was collected by filtration to give the title compound (305 mg, 90%). This compound was too insoluble to obtain a ¹³C NMR, and repeated attempts to isolate pure material for satisfactory elemental analysis were unsuccessful. Mo(NAr)(CHCMe₂Ph)(OHMT)(CI)(t-BuCN). Mo(NAr)-(CHCMe₂Ph)(bipy)Cl₂ (100 mg, 0.159 mmol) was suspended in Et_2O (40 mL), and the mixture was cooled to -25 °C. The suspension was treated slowly with a suspension of LiOHMT (53.5 mg, 0.159 mmol) and ZnCl₂ (35.6 mg, 0.159 mmol) in THF (10 mL). After being stirred at 22 $^{\circ}\text{C}$ for 40 h, the mixture was filtered through Celite, and the solvent was removed in vacuo to give a brown solid, which was rinsed with pentane (5 mL) and filtered through Celite to give a brown solution. Pivalonitrile (20 μ L) was added, and the resulting yellow precipitate was collected by filtration and washed with cold pentane (~1 mL) to give the product; 61 mg (46% yield) as a yellow solid. Anal. Calcd for C₅₁H₆₃ClMoN₂O: C, 71.94; H, 7.46; N, 3.29. Found: C, 71.96; H, 7.32; N, 3.29. $Mo(NAr)(CHCMe_2Ph)(OHMT)(CI)(3-Brpy).$ Mo(NAr)-(CHCMe₂Ph)(bipy)Cl₂ (100 mg, 0.159 mmol) was suspended in Et₂O (40 mL), and the mixture was cooled to -25 °C in a freezer. The suspension was treated slowly with a suspension of LiOHMT (53.5 $\,$ mg, 0.159 mmol) and ZnCl₂ (35.6 mg, 0.159 mmol) in THF (10 mL). After being stirred at 22 °C for 40 h, the reaction mixture was filtered through Celite, and the solvent was removed in vacuo to give a brown solid, which was rinsed with pentane (5 mL) and filtered through Celite to give a brown solution. 3-Bromopyridine (25 μ L) was added to the brown solution, and the resulting blue precipitate was collected by filtration and washed with cold pentane (~1 mL) to give the product (70 mg, 48% yield) as a blue-green solid. Anal. Calcd for C₅₁H₅₈BrClMoN₂O: C, 66.13; H, 6.31; N, 3.02. Found: C, 65.78; H, 6.36; N. 2.96. Mo(NAr)(CHCMe₂Ph)(OHMT)(CI)(PMe₂Ph). Mo(NAr)-(CHCMe₂Ph)(bipy)Cl₂ (100 mg, 0.159 mmol) was suspended in Et_2O (40 mL), and the mixture was cooled to -25 °C in a freezer. The suspension was treated with a suspension of LiOHMT (53.5 mg, 0.159 $\,$ mmol) and ZnCl₂ (35.6 mg, 0.159 mmol) in THF (10 mL). After being stirred at 22 °C for 40 h, the reaction mixture was filtered through Celite, and the solvent was removed in vacuo to give a brown solid. The brown solid was extracted with pentane (5 mL) and filtered through Celite. Dimethylphenylphosphine (25 μ L) was added to the brown pentane solution, and after 10 min the resulting yellow solid was collected by filtration and washed with cold pentane (~1 mL); yield 89 mg (62% yield). Anal. Calcd for C₅₄H₆₅ClMoNOP: C, 71.55; H, 7.23; N, 1.55. Found: C, 71.57; H, 7.29; N, 1.31. $Mo(NC_6F_5)(CHCMe_2Ph)(ODFT)(CI)(3-Brpy).$ $Mo(NC_6F_5)-$ (CHCMe₂Ph) (Me₂pyr)(ODFT)(NCMe) (280 mg, 0.289 mmol, 1.00 equiv) was dissolved in toluene, cooled to −25 °C in a freezer, and treated with 3-bromopyridinium chloride (56 mg, 0.289 mmol, 1.00 equiv). The mixture was stirred at 22 °C for 12 h, filtered through Celite, and concentrated in vacuo to give dark brown tar-like material. This material was washed with pentane $(3 \times 5 \text{ mL})$, and the remaining brown residue was dissolved in Et₂O (2 mL), diluted with pentane (2 mL), and filtered to give a yellow solution. Removal of solvent in vacuo gave $Mo(NC_6F_5)(CHCMe_2Ph)(ODFT)(Cl)(3-Br-py)$ (180 mg, 60% yield) as a yellow solid. Anal. Calcd for C₃₉H₁₉BrClF₁₅MoN₂O: C, 45.57; H, 1.86; N, 2.73. Found: C, 45.63; H, 1.93; N, 2.73. $Mo(NC_6F_5)(CHCMe_2Ph)(PPhMe_2)_2Cl_2$. $Mo(NC_6F_5)_2(CH_2CMe_2Ph)_2$ (1.00 g, 1.38 mmol, 1.00 equiv) was dissolved in Et₂O (6 mL), and Me₂PhPHCl (0.48 g, 2.76 mmol, 2.00 equiv) was added as a solid in one portion. The resulting suspension was stirred for 1 h at 22 °C, during which time the phosphonium salt dissolved and a yellow precipitate formed, which was collected by filtration, washed with 4 mL of cold Et₂O, and dried under vacuum to give Mo(NC₆F₅)-(CHCMe₂Ph)(PPhMe₂)₂Cl₂·Et₂O (760 mg, 66% yield) as a yellow solid. Anal. Calcd for C₃₂H₃₄Cl₂F₅MoNP₂: C, 50.81; H, 4.53; N, 1.85. Found: C, 50.77; H, 4.59; N, 1.82. $Mo(NC_6F_5)(CHCMe_2Ph)(OHIPT)(CI)(PPhMe_2)$. $Mo(NC_6F_5)$ -(CHCMe₂Ph)(PPhMe₂)₂Cl₂·Et₂O (640 mg, 0.771 mmol, 1.00 equiv) was suspended in Et₂O (15 mL) and cooled to -25 °C in a freezer. A cold solution (-25 °C) of HIPT-OLi (339 mg, 0.771 mmol, 1.00 equiv) in 5 mL of Et₂O was added slowly, and the resulting suspension was stirred for 16 h at 22 C. The reaction mixture was filtered through Celite, and volatiles were evaporated in vacuo. The residue was dissolved in pentane (20 mL) and filtered through Celite. The resulting brown solution was stirred at 22 °C for 1 h. During this time a yellow precipitate formed, which was collected by filtration, washed with 4 mL of cold pentane, and dried under vacuum to give Mo(NC₆F₅)(CHCMe₂Ph)(PPhMe₂)(OHIPT)(Cl) (540 mg, 65% yield) as a yellow solid. Despite repeated attempts to purify the material, samples submitted for elemental analysis consistently gave lower C content than expected. This circumstance may be the result of incomplete combustion of the fluorinated organic fragments. Anal. Calcd for $\rm C_{60}H_{72}ClF_5MoNOP\colon C$, 66.69; H, 6.72; N, 1.30. Found: C, 65.68; H, 6.82; N, 1.05. $Mo(NC_6F_5)(CHCMe_2Ph)(OHMT)(Cl)(PPhMe_2)$. The title compound was prepared in 71% yield as an orange powder as described above for Mo(NC₆F₅)(CHCMe₂Ph)(OHIPT)(Cl)(PPhMe₂). Elemental analyses again were low in carbon. An example is Anal. Calcd for C₄₈H₄₈ClF₅MoNOP: C, 63.20; H, 5.30; N, 1.54. Found: C, 61.58; H, 5.20; N, 1.56. ## ASSOCIATED CONTENT # **S** Supporting Information The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/jacs.6b10499. Full experimental details, including NMR data and spectra for new compounds, complete table of reactivities, and GC traces; X-ray crystallographic data for complexes 4(*t*-BuCN), 5(MeCN), and 8b(PMe₂Ph) and comparisons with other structures; and a full description of all catalytic studies (PDF) X-ray crystallographic file for 4(t-BuCN) (CIF) X-ray crystallographic file for 5(MeCN) (CIF) X-ray crystallographic file for 8b(PMe₂Ph) (CIF) #### AUTHOR INFORMATION ### **Corresponding Author** *rrs@mit.edu ORCID ® Jonathan K. Lam: 0000-0003-1913-7173 Amir Hoveyda: 0000-0002-1470-6456 Richard R. Schrock: 0000-0001-5827-3552 Notes The authors declare no competing financial interest. ## ACKNOWLEDGMENTS We are grateful for financial support from the National Institutes of Health (GM-59426) and from the National Science Foundation (CHE-1463707). We also thank the NSF for support of X-ray diffraction instrumentation (CHE-0946721), Dr. Bruce Adams for NMR support, Prof. Tim Jamison for use of GC instruments, and Dr. Jonathan Becker for X-ray studies. ## REFERENCES - (1) (a) Wang, C.; Yu, M.; Kyle, A. F.; Jakubec, P.; Dixon, D. J.; Schrock, R. R.; Hoveyda, A. H. Chem. Eur. J. 2013, 19, 2726–2740. (b) Schrock, R. R. In Handbook of Metathesis, Vol. 1, 2nd ed.; Grubbs, R. H., Wenzel, A. G., Eds.; Wiley-VCH: Weinheim, 2015; p 1. (c) Hoveyda, A. H.; Zhugralin, A. R. Nature 2007, 450, 243–251. (d) Yu, M.; Schrock, R. R.; Hoveyda, A. H. Angew. Chem., Int. Ed. 2015, 54, 215–220. - (2) Schrock, R. R. Chem. Rev. 2009, 109, 3211-3226. - (3) (a) Mann, T. J.; Speed, A. W. H.; Schrock, R. R.; Hoveyda, A. H. Angew. Chem., Int. Ed. 2013, 52, 8395–8400. (b) Speed, A. W. H.; Mann, T. J.; O'Brien, R. V.; Schrock, R. R.; Hoveyda, A. H. J. Am. Chem. Soc. 2014, 136, 16136–16139. (c) Zhang, H.; Yu, E. C.; Torker, T.; Schrock, R. R.; Hoveyda, A. H. J. Am. Chem. Soc. 2014, 136, 16493–16496. - (4) (a) Schrock, R. R. Acc. Chem. Res. 2014, 47, 2457–2466. (b) Autenrieth, B.; Jeong, H.; Forrest, W. P.; Axtell, J. C.; Ota, A.; Lehr, T.; Buchmeiser, M. R.; Schrock, R. R. Macromolecules 2015, 48, 2480–2492. (c) Autenrieth, B.; Schrock, R. R. Macromolecules 2015, 48, 2493–2503. (d) Jang, E. S.; John, J. M.; Schrock, R. R. ACS Cent. Sci. 2016, 2, 631–636. - (5) Koh, M.-J.; Nguyen, T. T.; Zhang, H.; Schrock, R. R.; Hoveyda, A. H. Nature **2016**, 531, 459–465. - (6) Nguyen, T. T.; Koh, M.-J.; Shen, X.; Romiti, F.; Schrock, R. R.; Hoveyda, A. H. Science **2016**, 352, 569–575. - (7) Koh, M. J.; Nguyen, T. T.; Lam, J.; Torker, S.; Hyvl, J.; Schrock, R. R.; Hoveyda, A. H., *Nature*, accepted for publication. - (8) Addison, A. W.; Rao, T. N.; Van Rijn, J.; Veschoor, G. C.; Reedijk, J. J. Chem. Soc., Dalton Trans. 1984, 1349–1356. - (9) Gerber, L. C. H.; Schrock, R. R.; Müller, P.; Takase, M. K. J. Am. Chem. Soc. 2011, 133, 18142–18144. - (10) Peryshkov, D. V.; Schrock, R. R.; Takase, M. K.; Müller, P.; Hoveyda, A. H. *J. Am. Chem. Soc.* **2011**, *133*, 20754–20757. - (11) Jeong, H.; Schrock, R. R.; Müller, P. Organometallics 2015, 34, 4408-4418. - (12) (a) Schrock, R. R. In *Reactions of Coordinated Ligands*; Braterman, P. R., Ed.; Plenum: New York, 1986; p 221. (b) Schrock, R. R. *Chem. Rev.* **2002**, *102*, 145–180. (c) Schrock, R. R.; Hoveyda, A. H. *Angew. Chem., Int. Ed.* **2003**, 42, 4592–4633. - (13) (a) Schrock, R. R. Angew. Chem., Int. Ed. **2006**, 45, 3748–3759. (b) Schrock, R. R.;
Czekelius, C. C. Adv. Synth. Catal. **2007**, 349, 55–77. (c) Schrock, R. R. Adv. Synth. Catal. **2007**, 349, 41–53. - (14) (a) Bell, A. P.; Clegg, W.; Dyer, P. W.; Elsegood, M. R. J.; Gibson, V. C.; Marshall, E. L. *J. Chem. Soc., Chem. Commun.* **1994**, 2547–2548. (b) Jeong, H.; Kozera, D. J.; Schrock, R. R.; Smith, S. J.; Zhang, J.; Ren, N.; Hillmyer, M. A. *Organometallics* **2013**, 32, 4843–4850. - (15) Jeong, H. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, 2015. - (16) Lichtscheidl, A. G.; Ng, V. W. L.; Müller, P.; Takase, M. K.; Schrock, R. R.; Malcolmson, S. J.; Meek, S. J.; Li, B.; Kiesewetter, E. T.; Hoveyda, A. H. *Organometallics* **2012**, *31*, 4558–4570. - (17) Jeong, H.; Axtell, J.; Török, B.; Schrock, R. R.; Müller, P. Organometallics 2012, 31, 6522-6525. - (18) Oskam, J. H.; Schrock, R. R. J. Am. Chem. Soc. 1993, 115, 11831–11845. - (19) (a) Schrock, R. R.; Fellmann, J. D. J. Am. Chem. Soc. 1978, 100, 3359–3370. (b) Wood, C. D.; McLain, S. J.; Schrock, R. R. J. Am. Chem. Soc. 1979, 101, 3210–3222. - (20) Beckhaus, R.; Strauss, I.; Wagner, T. Angew. Chem., Int. Ed. Engl. 1995, 34, 688. - (21) (a) Yuan, J.; Schrock, R. R.; Müller, P.; Axtell, J. C.; Dobereiner, G. E. *Organometallics* **2012**, *31*, 4650–4653. (b) Yuan, J.; Schrock, R. R.; Gerber, L. C.; Müller, P.; Smith, S. *Organometallics* **2013**, *32*, 2983–2992. - (22) Hock, A. S.; Schrock, R. R.; Hoveyda, A. H. J. Am. Chem. Soc. 2006, 128, 16373–16375. - (23) Flook, M. M.; Ng, V. W. L.; Schrock, R. R. J. Am. Chem. Soc. **2011**, 133, 1784–1786.